Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Characterization of electrochemically deposited CuInTe2 thin films for solar cell applications

Identifieur interne : 000184 ( Main/Repository ); précédent : 000183; suivant : 000185

Characterization of electrochemically deposited CuInTe2 thin films for solar cell applications

Auteurs : RBID : Pascal:14-0084076

Descripteurs français

English descriptors

Abstract

CuInTe2 (CIT) thin films have been electrochemically deposited from aqueous electrolyte onto fluorine doped tin oxide (FTO) coated glass substrates. A conventional three-electrode geometry consisting working, counter and reference electrodes was used to perform the electrochemical studies. The deposition potential, - 0.75 V with respect to Ag/AgCl was optimized by cyclic voltammetry (CV). The as-deposited as well as annealed films were characterized using range of characterization techniques to study the structural, morphological, compositional and optoelectronic properties. Amorphous CIT films have been deposited for all reported potentials, however after heat treatment the polycrystalline films with (112), (220)/(204) and (312)/(116) planes corresponds to tetragonal CIT are observed. After heat treatment the secondary peaks of Indium oxide and Indium telluride with planes (012), (222) and (311) were also observed. Identification of secondary microcrystalline phases and vibration modes of chalcopyrite were studied by using Raman spectroscopy. The most intense line observed in Raman spectra at 123 cm-1 is due to the A, mode, which is generally observed in Raman spectra of I-III- VI2 chalcopyrite structure. Densely packed, adherent and relatively uniform thin films of CIT are deposited for all used growth potentials. The grain size has been improved with heat treatment. Elemental compositional analysis was performed using Energy Dispersive X-ray Analysis (EDAX). Tellurium rich films are deposited for all reported potentials. The final solar cell devices fabricated at optimum deposition potential are tested using solar simulator with 1.5 AM, (100 mW cm-2). The cell parameters obtained from J-V characteristics are, Voc=480 mV, Jsc=20 mA/cm2, FF=43% and η=4.13%. The calculated values of series resistance Rs and Ideality factor A under dark and illuminated conditions are 334/27 Ω and 1.43/1.63, respectively.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0084076

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Characterization of electrochemically deposited CuInTe
<sub>2</sub>
thin films for solar cell applications</title>
<author>
<name sortKey="Lakhe, Manorama" uniqKey="Lakhe M">Manorama Lakhe</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, University of Pune</s1>
<s2>Ganeshkhind, Pune 411007</s2>
<s3>IND</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Inde</country>
<wicri:noRegion>Ganeshkhind, Pune 411007</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chaure, Nandu B" uniqKey="Chaure N">Nandu B. Chaure</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, University of Pune</s1>
<s2>Ganeshkhind, Pune 411007</s2>
<s3>IND</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Inde</country>
<wicri:noRegion>Ganeshkhind, Pune 411007</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0084076</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0084076 INIST</idno>
<idno type="RBID">Pascal:14-0084076</idno>
<idno type="wicri:Area/Main/Corpus">000094</idno>
<idno type="wicri:Area/Main/Repository">000184</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0927-0248</idno>
<title level="j" type="abbreviated">Sol. energy mater. sol. cells</title>
<title level="j" type="main">Solar energy materials and solar cells</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amorphous material</term>
<term>Annealing</term>
<term>Aqueous electrolyte</term>
<term>Auxiliary electrode</term>
<term>Chalcopyrite</term>
<term>Chalcopyrite structure</term>
<term>Chemical composition</term>
<term>Coated material</term>
<term>Coatings</term>
<term>Copper tellurides</term>
<term>Cyclic voltammetry</term>
<term>Energy-dispersive X-ray analysis</term>
<term>Fluorine addition</term>
<term>Glass</term>
<term>Grain size</term>
<term>Grain size analysis</term>
<term>Heat treatment</term>
<term>Indium oxide</term>
<term>Indium tellurides</term>
<term>Microcrystal</term>
<term>Optimization</term>
<term>Optoelectronic properties</term>
<term>Polycrystal</term>
<term>Raman spectrometry</term>
<term>Reference electrode</term>
<term>Silver chloride</term>
<term>Solar cell</term>
<term>Solar simulators</term>
<term>Tellurium</term>
<term>Ternary compound</term>
<term>Thin film</term>
<term>Thin film cell</term>
<term>Tin oxide</term>
<term>Vibrational mode</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Cellule couche mince</term>
<term>Cellule solaire</term>
<term>Electrolyte aqueux</term>
<term>Addition fluor</term>
<term>Revêtement</term>
<term>Electrode référence</term>
<term>Optimisation</term>
<term>Voltammétrie cyclique</term>
<term>Recuit</term>
<term>Propriété optoélectronique</term>
<term>Matériau amorphe</term>
<term>Traitement thermique</term>
<term>Polycristal</term>
<term>Mode vibration</term>
<term>Spectrométrie Raman</term>
<term>Structure chalcopyrite</term>
<term>Grosseur grain</term>
<term>Granulométrie</term>
<term>Composition chimique</term>
<term>Analyse RX dispersion énergie</term>
<term>Simulateur solaire</term>
<term>Composé ternaire</term>
<term>Tellurure de cuivre</term>
<term>Couche mince</term>
<term>Oxyde d'étain</term>
<term>Matériau revêtu</term>
<term>Verre</term>
<term>Chlorure d'argent</term>
<term>Oxyde d'indium</term>
<term>Tellurure d'indium</term>
<term>Microcristal</term>
<term>Chalcopyrite</term>
<term>Tellure</term>
<term>CuInTe2</term>
<term>AgCl</term>
<term>Electrode auxiliaire</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Matériau amorphe</term>
<term>Verre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">CuInTe
<sub>2</sub>
(CIT) thin films have been electrochemically deposited from aqueous electrolyte onto fluorine doped tin oxide (FTO) coated glass substrates. A conventional three-electrode geometry consisting working, counter and reference electrodes was used to perform the electrochemical studies. The deposition potential, - 0.75 V with respect to Ag/AgCl was optimized by cyclic voltammetry (CV). The as-deposited as well as annealed films were characterized using range of characterization techniques to study the structural, morphological, compositional and optoelectronic properties. Amorphous CIT films have been deposited for all reported potentials, however after heat treatment the polycrystalline films with (112), (220)/(204) and (312)/(116) planes corresponds to tetragonal CIT are observed. After heat treatment the secondary peaks of Indium oxide and Indium telluride with planes (012), (222) and (311) were also observed. Identification of secondary microcrystalline phases and vibration modes of chalcopyrite were studied by using Raman spectroscopy. The most intense line observed in Raman spectra at 123 cm
<sup>-1</sup>
is due to the A, mode, which is generally observed in Raman spectra of I-III- VI
<sub>2</sub>
chalcopyrite structure. Densely packed, adherent and relatively uniform thin films of CIT are deposited for all used growth potentials. The grain size has been improved with heat treatment. Elemental compositional analysis was performed using Energy Dispersive X-ray Analysis (EDAX). Tellurium rich films are deposited for all reported potentials. The final solar cell devices fabricated at optimum deposition potential are tested using solar simulator with 1.5 AM, (100 mW cm
<sup>-2</sup>
). The cell parameters obtained from J-V characteristics are, V
<sub>oc</sub>
=480 mV, J
<sub>sc</sub>
=20 mA/cm
<sup>2</sup>
, FF=43% and η=4.13%. The calculated values of series resistance R
<sub>s</sub>
and Ideality factor A under dark and illuminated conditions are 334/27 Ω and 1.43/1.63, respectively.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0927-0248</s0>
</fA01>
<fA03 i2="1">
<s0>Sol. energy mater. sol. cells</s0>
</fA03>
<fA05>
<s2>123</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Characterization of electrochemically deposited CuInTe
<sub>2</sub>
thin films for solar cell applications</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>LAKHE (Manorama)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>CHAURE (Nandu B.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Physics, University of Pune</s1>
<s2>Ganeshkhind, Pune 411007</s2>
<s3>IND</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>122-129</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18016</s2>
<s5>354000506140400150</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>26 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0084076</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solar energy materials and solar cells</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>CuInTe
<sub>2</sub>
(CIT) thin films have been electrochemically deposited from aqueous electrolyte onto fluorine doped tin oxide (FTO) coated glass substrates. A conventional three-electrode geometry consisting working, counter and reference electrodes was used to perform the electrochemical studies. The deposition potential, - 0.75 V with respect to Ag/AgCl was optimized by cyclic voltammetry (CV). The as-deposited as well as annealed films were characterized using range of characterization techniques to study the structural, morphological, compositional and optoelectronic properties. Amorphous CIT films have been deposited for all reported potentials, however after heat treatment the polycrystalline films with (112), (220)/(204) and (312)/(116) planes corresponds to tetragonal CIT are observed. After heat treatment the secondary peaks of Indium oxide and Indium telluride with planes (012), (222) and (311) were also observed. Identification of secondary microcrystalline phases and vibration modes of chalcopyrite were studied by using Raman spectroscopy. The most intense line observed in Raman spectra at 123 cm
<sup>-1</sup>
is due to the A, mode, which is generally observed in Raman spectra of I-III- VI
<sub>2</sub>
chalcopyrite structure. Densely packed, adherent and relatively uniform thin films of CIT are deposited for all used growth potentials. The grain size has been improved with heat treatment. Elemental compositional analysis was performed using Energy Dispersive X-ray Analysis (EDAX). Tellurium rich films are deposited for all reported potentials. The final solar cell devices fabricated at optimum deposition potential are tested using solar simulator with 1.5 AM, (100 mW cm
<sup>-2</sup>
). The cell parameters obtained from J-V characteristics are, V
<sub>oc</sub>
=480 mV, J
<sub>sc</sub>
=20 mA/cm
<sup>2</sup>
, FF=43% and η=4.13%. The calculated values of series resistance R
<sub>s</sub>
and Ideality factor A under dark and illuminated conditions are 334/27 Ω and 1.43/1.63, respectively.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D05I03D</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Cellule couche mince</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Thin film cell</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Célula capa delgada</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Electrolyte aqueux</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Aqueous electrolyte</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Electrólito acuoso</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Addition fluor</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Fluorine addition</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Adición fluor</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Revêtement</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Coatings</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Revestimiento</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Electrode référence</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Reference electrode</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Electrodo referencia</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Optimisation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Optimization</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Optimización</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Voltammétrie cyclique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Cyclic voltammetry</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Voltametría cíclica</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Recuit</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Annealing</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Recocido</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Propriété optoélectronique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Optoelectronic properties</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Propiedad optoelectrónica</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Matériau amorphe</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Amorphous material</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Material amorfo</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Traitement thermique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Heat treatment</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Tratamiento térmico</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Polycristal</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Polycrystal</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Policristal</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Mode vibration</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Vibrational mode</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Modo de vibración</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Spectrométrie Raman</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Raman spectrometry</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Espectrometría Raman</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Structure chalcopyrite</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Chalcopyrite structure</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Estructura calcopirita</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Grosseur grain</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Grain size</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Grosor grano</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Granulométrie</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Grain size analysis</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Granulometría</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Composition chimique</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Chemical composition</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Composición química</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Analyse RX dispersion énergie</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Energy-dispersive X-ray analysis</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Análisis RX dispersión energía</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Simulateur solaire</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Solar simulators</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Composé ternaire</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Ternary compound</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Compuesto ternario</s0>
<s5>22</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Tellurure de cuivre</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Copper tellurides</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Couche mince</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Thin film</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Capa fina</s0>
<s5>24</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Oxyde d'étain</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Tin oxide</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Estaño óxido</s0>
<s5>25</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Matériau revêtu</s0>
<s5>26</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Coated material</s0>
<s5>26</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Material revestido</s0>
<s5>26</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Verre</s0>
<s5>27</s5>
</fC03>
<fC03 i1="27" i2="X" l="ENG">
<s0>Glass</s0>
<s5>27</s5>
</fC03>
<fC03 i1="27" i2="X" l="SPA">
<s0>Vidrio</s0>
<s5>27</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>Chlorure d'argent</s0>
<s5>28</s5>
</fC03>
<fC03 i1="28" i2="X" l="ENG">
<s0>Silver chloride</s0>
<s5>28</s5>
</fC03>
<fC03 i1="28" i2="X" l="SPA">
<s0>Plata cloruro</s0>
<s5>28</s5>
</fC03>
<fC03 i1="29" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>29</s5>
</fC03>
<fC03 i1="29" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>29</s5>
</fC03>
<fC03 i1="29" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>29</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>Tellurure d'indium</s0>
<s2>NK</s2>
<s5>30</s5>
</fC03>
<fC03 i1="30" i2="3" l="ENG">
<s0>Indium tellurides</s0>
<s2>NK</s2>
<s5>30</s5>
</fC03>
<fC03 i1="31" i2="X" l="FRE">
<s0>Microcristal</s0>
<s5>31</s5>
</fC03>
<fC03 i1="31" i2="X" l="ENG">
<s0>Microcrystal</s0>
<s5>31</s5>
</fC03>
<fC03 i1="31" i2="X" l="SPA">
<s0>Microcristal</s0>
<s5>31</s5>
</fC03>
<fC03 i1="32" i2="X" l="FRE">
<s0>Chalcopyrite</s0>
<s5>32</s5>
</fC03>
<fC03 i1="32" i2="X" l="ENG">
<s0>Chalcopyrite</s0>
<s5>32</s5>
</fC03>
<fC03 i1="32" i2="X" l="SPA">
<s0>Calcopirita</s0>
<s5>32</s5>
</fC03>
<fC03 i1="33" i2="X" l="FRE">
<s0>Tellure</s0>
<s2>NC</s2>
<s5>33</s5>
</fC03>
<fC03 i1="33" i2="X" l="ENG">
<s0>Tellurium</s0>
<s2>NC</s2>
<s5>33</s5>
</fC03>
<fC03 i1="33" i2="X" l="SPA">
<s0>Teluro</s0>
<s2>NC</s2>
<s5>33</s5>
</fC03>
<fC03 i1="34" i2="X" l="FRE">
<s0>CuInTe2</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="35" i2="X" l="FRE">
<s0>AgCl</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="36" i2="X" l="FRE">
<s0>Electrode auxiliaire</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="36" i2="X" l="ENG">
<s0>Auxiliary electrode</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>111</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000184 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000184 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0084076
   |texte=   Characterization of electrochemically deposited CuInTe2 thin films for solar cell applications
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024